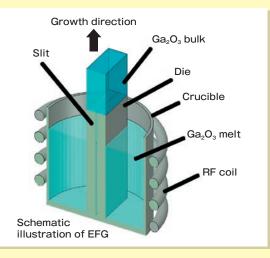

Gallium Oxide (Ga₂O₃) Substrates and Epitaxial Wafers

Novel Crystal Technology, Inc.

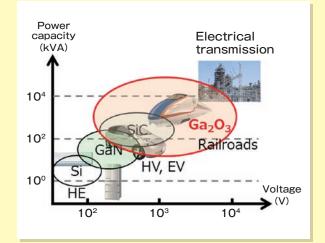
Gallium oxide (Ga_2O_3) has a large band-gap energy, and it can be grown from a melt source. As a result, large, high-quality single-crystal substrates can be manufactured at low cost. These characteristics make Ga_2O_3 a promising material for next-generation power electronics.

In fact, Ga₂O₃ is potentially superior to GaN and SiC for power device applications.


Electrical characteristics

	Si	4H-SiC	GaN	Diamond	β-Ga ₂ O ₃	
Band gap : <i>E</i> g (eV)	1.1	3.3	3.4	5.5	4.8-4.9	
Breakdown field : E_{c} (MV/cm)	0.3	2.5	3.3	10	8 (est.)	
Electron mobility : μ (cm ² /Vs)	1,400	1,000	1,200	2,000	300 (est.)	
Dielectric constant : $\boldsymbol{\epsilon}_{s}$	11.8	9.8	9.0	5.5	10	
Baliga's FOM ¹¹ : $\epsilon \mu E_c^3$	1	340	870	24,664	3,444	

 Ga_2O_3 has a larger Baliga's FOM^{''} than those of SiC and GaN.


*1: An index of the performance of power device materials

Method of growing bulk single crystals

 Ga_2O_3 bulk single crystals are grown in an edge-defined film-fed growth (EFG) process. The growth rate is high with this method, and it is easy to make large-diameter substrates.

Applications

 Ga_2O_3 has a wide range of industrial applications, such as in power conditioners of inverters for driving the motors of electric vehicles and trains and in next-generation electrical power transmission systems.

Contact details for inquiries

Novel Crystal Technology, Inc. 2-3-1 Hirosedai Sayama-shi Saitama 350-1328 TEL.+81-4-2900-0072 FAX.+81-4-2900-0059 http://www.novelcrystal.co.jp/mail:sales@novelcrystal.co.jp